Characterization and prediction of protein-protein interactions within and between complexes.
نویسندگان
چکیده
Databases of experimentally determined protein interactions provide information on binary interactions and on involvement in multiprotein complexes. These data are valuable for understanding the general properties of the interaction between proteins as well as for the development of prediction schemes for unknown interactions. Here we analyze experimentally determined protein interactions by measuring various sequence, genomic, transcriptomic, and proteomic attributes of each interacting pair in the yeast Saccharomyces cerevisiae. We find that dividing the data into two groups, one that includes binary interactions within protein complexes (stable) and another that includes binary interactions that are not within complexes (transient), enables better characterization of the interactions by the different attributes and improves the prediction of new interactions. This analysis revealed that most attributes were more indicative in the set of intracomplex interactions. Using this data set for training, we integrated the different attributes by logistic regression and developed a predictive scheme that distinguishes between interacting and noninteracting protein pairs. Analysis of the logistic-regression model showed that one of the strongest contributors to the discrimination between interacting and noninteracting pairs is the presence of distinct pairs of domain signatures that were suggested previously to characterize interacting proteins. The predictive algorithm succeeds in identifying both intracomplex and other interactions (possibly the more stable ones), and its correct identification rate is 2-fold higher than that of large-scale yeast two-hybrid experiments.
منابع مشابه
Discovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملThe binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands
The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 40 شماره
صفحات -
تاریخ انتشار 2006